Trey Greenwood - December 4

Convective Meteorology (Mesoscale Dynamics) Seminar   Analysis of Tornadic Supercells Using High-Resolution, Mobile Doppler Radar   Trey Greenwood Friday, December 4th 3:00pm Join Google Meet https://meet.google.com/ksh-txvg-kni     Mobile Doppler radar is a critical tool in studying microscale phenomena, including tornadoes, in supercell thunderstorms at close-range; however, a relative dearth of high-quality cases documenting the tornadic life cycle has hindered the advancement of our understanding of tornado evolution, storm-scale processes related to tornadogenesis and decay, and why some supercells produce tornadoes and others do not. In this study, we analyze four tornadic events in Oklahoma during the springs of 2015 and 2019 that were documented by the Mobile Weather Radar, 2005 X-Band, Phased Array (MWR-05XP) and the Rapid X-band Polarimetric (RaXPol) radar. Analysis of each case focuses on the following points:   •           Tornadogenesis and decay (when applicable): whether the tornado vortex signature (TVS) builds upward or downward, •           How the TVS as a function of height evolves over time, •           Vortex tilt as a function of height and its evolution over time, and •           Any unique features evident in the data, particularly those that yielded changes to the behavior of the vortex, such as rear-flank downdrafts surges, descending reflectivity cores, etc.   The most fruitful case analyzed was a supercell that produced an EF3 tornado between Amber and Bridge Creek, Oklahoma, on 6 May 2015. While tornadogenesis was not documented by the MWR-05XP, data revealed a period of low-level vortex intensification coincident with a rapid increase in the intensity of the upper-level vortex. This concurrence has been documented in previous cases during tornadogenesis; however, in tornadogenesis cases, the vortex builds simultaneously through a deep layer, rather than separately at different levels. In addition, the vortex was found to decay in an “inside-out” manner while widening in the low-levels, as has been discovered in previous mobile Doppler radar cases. A weak-echo hole, secondary rear-flank downdraft (RFD) surge, and a scalloped RFD gust front with subtornadic vortices along it were also observed.   In addition, using data from a separate tornadic supercell near Elmer, Oklahoma, on 16 May 2015, a single-Doppler velocity retrieval (SDVR) was attempted using the methods outlined in Liou et al. (2018). While the tornadic vortex and RFD gust front were retrieved, winds were northeasterly in the inflow region of the supercell, which appears to be erroneous. A potential cause and solution for this issue will be discussed.

Start

December 4, 2020 - 3:00 pm

End

December 4, 2020 - 4:00 pm

Convective Meteorology (Mesoscale Dynamics) Seminar

 

Analysis of Tornadic Supercells Using High-Resolution, Mobile Doppler Radar

 

TreGreenwood

Friday, December 4th

3:00pm

Join Google Meet

https://meet.google.com/ksh-txvg-kni

 

 

Mobile Doppler radar is a critical tool in studying microscale phenomena, including tornadoes, in supercell thunderstorms at close-range; however, a relative dearth of high-quality cases documenting the tornadic life cycle has hindered the advancement of our understanding of tornado evolution, storm-scale processes related to tornadogenesis and decay, and why some supercells produce tornadoes and others do not. In this study, we analyze four tornadic events in Oklahoma during the springs of 2015 and 2019 that were documented by the Mobile Weather Radar, 2005 X-Band, Phased Array (MWR-05XP) and the Rapid X-band Polarimetric (RaXPol) radar. Analysis of each case focuses on the following points:

 

•           Tornadogenesis and decay (when applicable): whether the tornado vortex signature (TVS) builds upward or downward,

•           How the TVS as a function of height evolves over time,

•           Vortex tilt as a function of height and its evolution over time, and

•           Any unique features evident in the data, particularly those that yielded changes to the behavior of the vortex, such as rear-flank downdrafts surges, descending reflectivity cores, etc.

 

The most fruitful case analyzed was a supercell that produced an EF3 tornado between Amber and Bridge Creek, Oklahoma, on 6 May 2015. While tornadogenesis was not documented by the MWR-05XP, data revealed a period of low-level vortex intensification coincident with a rapid increase in the intensity of the upper-level vortex. This concurrence has been documented in previous cases during tornadogenesis; however, in tornadogenesis cases, the vortex builds simultaneously through a deep layer, rather than separately at different levels. In addition, the vortex was found to decay in an “inside-out” manner while widening in the low-levels, as has been discovered in previous mobile Doppler radar cases. A weak-echo hole, secondary rear-flank downdraft (RFD) surge, and a scalloped RFD gust front with subtornadic vortices along it were also observed.

 

In addition, using data from a separate tornadic supercell near Elmer, Oklahoma, on 16 May 2015, a single-Doppler velocity retrieval (SDVR) was attempted using the methods outlined in Liou et al. (2018). While the tornadic vortex and RFD gust front were retrieved, winds were northeasterly in the inflow region of the supercell, which appears to be erroneous. A potential cause and solution for this issue will be discussed.

MORE DETAIL