Convective Meteorology (Mesoscale Dynamics)

A new approach for parameterizing cloud microphysics based on the prediction of ice-phase particle properties

Hugh Morrison, NCAR
Jason A. Milbrandt, Environment Canada

13 May 2014, 4:00 PM

National Weather Center, Room 5600
120 David L. Boren Blvd.
University of Oklahoma
Norman, OK

The representation of cloud microphysics continues to be a source of uncertainty in atmospheric models. Traditionally, microphysics schemes partition ice-phase particles into pre-defined categories with prescribed bulk characteristics. This approach, used in nearly all existing schemes, is intrinsically restrictive and imposes the need for conversion between categories, which is poorly constrained and often unphysical. A fundamentally different approach is proposed and serves as the basis for a new bulk microphysics scheme. In the new scheme, ice particle properties are predicted and evolve locally in time and space by prognosing four independent mixing ratio variables: total ice mass, rime ice mass, rime volume, and ice number. From these variables, important physical properties that describe the ice hydrometeors at any point in time and space can be derived with four degrees of freedom. This allows the full range of ice particle types to be represented by a single ice category. The new approach thus eliminates the need for conversion rates and thresholds between different ice categories.
The behavior of the new scheme is illustrated with 3D simulations using the Weather Research and Forecasting (WRF) model over a wide range of conditions, including winter orographic precipitation and different types of convective storms. Results are compared to observations and simulations using other bulk microphysics schemes. Despite its simplicity, the new scheme produces a realistic simulation of meteorological phenomena and with a limited computational cost compared to other schemes.

For accommodations based on disability, or more details, please call 325-6561. All visitors without NOAA or University of Oklahoma identification must register at the registration desk on arrival. Visitor parking is available for all University visitors. However, faculty/staff/students must have a current multi-purpose parking permit. Additional parking is available at the Lloyd Noble Center (LNC) for those individuals who do not have a parking permit. You do not need a permit to park in one of 1,200 spaces reserved for CART bus riders, although you must ride the CART shuttle to park in the reserved area. This area is on the north central side of the Lloyd Noble Center. Elsewhere at the LNC, permits are required.

The University of Oklahoma is a smoke-free / tobacco-free campus.

Convective Meteorology (Mesoscale Dynamics) Seminar Series website