METR 6803 SECTION 1: NUMERICAL WEATHER PREDICTION

SPRING SEMESTER 2008

Class Times: Tues / Thurs 1pm 2-15pm, Room NWC 5930

INSTRUCTOR: Lance M. Leslie (lmleslie@ou.edu)

1. Introduction and Course Overview
 - a brief historical perspective
 - what are numerical weather analysis (NWA) and numerical weather prediction (NWP)?
 - how does NWP differ from climate modeling?
 - why are NWA and NWP so important?
 - how good are they?

2. Governing Equations for NWP
 - derivation of equations
 - classification of equations
 - the barotropic vorticity equation
 - shallow water equations
 - normal modes
 - forced modes

3. Numerical Weather Analysis I: Background
 - definitions
 - concepts
 - applications

4. Numerical Weather Analysis II: Techniques
 - local and global polynomial interpolation
 - empirical linear interpolation
 - least squares minimization
 - emerging techniques

5. Geostrophic Adjustment
 - theory
 - applications

6. Model Initialization
 - model shock and model spin-up
 - static and dynamic initialization
7. **NWP Methods I: Definitions and Operators**
 - spectral and finite element methods
 - finite-difference methods

8. **NWP Methods II: Theory of Finite-difference methods**
 - concepts
 - consistency, convergence and stability

9. **NWP Methods III: Types of Finite-difference Schemes**
 - time differencing
 - spatial differencing
 - boundary conditions
 - filters

10. **NWP Methods IV: Examples of Models**
 - numerics of LFM, GFS, ETA, RSM, RAMS, MM5, WRF models

11. **Climate Modeling: An Introduction**
 - a climate modeling primer

12. **Atmospheric Predictability**
 - basic concepts and definitions
 - chaos theory
 - error growth
 - predictability of tropics vs. extra-tropics
 - ensemble forecasting methods

13. **The Future of NWA and NWP**
 - a look at what we might expect over the next decade or so