Metr 6803: Numerical Weather Prediction Syllabus: Spring 2013

<u>M / W - 10:00-11:15, NWC 5930</u>

Professor Lance M. Leslie

1. Introduction and Course Overview

- historical perspective
- what are numerical weather analysis (NWA) and numerical weather prediction (NWP)?
- why are they important?
- how "good" are they at present?

2. Governing Equations for NWP

- derivation
- classification
- barotropic vorticity equation
- shallow water equations
- normal modes
- forced modes

3. Numerical Weather Analysis I

- definitions
- concepts
- applications

4. Numerical Weather Analysis II

- local and global polynomial interpolation
- empirical linear interpolation
- least squares minimization including Kalman filter and variational methods
- emerging techniques

5. Geostrophic Adjustment

- theory
- applications

6. Model Initialization

- model shock and model spin-up
- static and dynamic initialization

7. NWP Methods I: Definitions and Operators

- spectral and finite element methods
- finite-difference methods

8. <u>NWP Methods II: Theory</u>

- concepts
- consistency, convergence and stability

9. <u>NWP Methods III: Types of Schemes</u>

- time differencing
- spatial differencing
- boundary conditions
- conserving schemes
- filters

10. NWP Methods IV: Examples of Models

- Overview of numerics of GFS, RUC/RAP, CAPS, MM5, WRF models

11. Atmospheric Predictability

- basic concepts and definitions
- chaos theory
- error growth
- predictability of tropics vs extra-tropics
- ensemble forecasting methods

12. The Future of NWA and NWP

- a look at what we might expect over the next decade