Data analysis is a routine part of many types of research in the atmospheric sciences. As such, having the right set of tools and the prowess on how to use those tools is an important part to understanding the behavior of the climate system.

This course offers an overview of some advanced statistical methods used to interpret data in the atmospheric and oceanic sciences. It is designed to be an applied course: i.e., the goal is to gain a working knowledge of the statistical tools most commonly used in the atmospheric sciences. Major topics to be covered include: (A) regression/correlation and epoch analyses; (B) time series analysis (e.g., power spectra, filtering, wavelet analysis); (C) matrix methods for signal decomposition (e.g., EOFs, CCA); and (D) objective mapping and covariance modeling. The course is intended for graduate students and senior undergraduates (with permission). Although previous knowledge of probability and statistics is preferable, a short review of statistical measures will be provided. You will also need a working knowledge of a software package to analyze data (e.g., Python, MATLAB, IDL, NCL, etc.). This will be important because of the highly applied nature of the course.
There is no required text for the class. Most of the class will be taught with my own personal notes. However, there are several sources and texts that will be useful (Textbooks will be available on reserve or you can purchase them):

- Dennis Hartmann class notes on objective analysis: http://www.atmos.washington.edu/~dennis/552_Notes_ftp.html
- Discrete Inverse and State Estimation Problems - Carl Wunsch, Cambridge Press
- Statistical Analysis in Climate Research - Hans von Storch and Francis W. Zwiers

Course Web Page
The web page will be accessible via https://canvas.ou.edu (log on using your OU 4+4). There you will find course materials (e.g., class notes, assignments, and examples), grades, and other news and announcements about the course.

Grading
Homework Assignments: 70%
Final Project: 30%

Homework Assignments. There will be about 6-7 homework assignments throughout the semester. Homework assignments must be typed and electronically submitted through Canvas. All plots included with your assignment should have proper units, labels, colorbars, and informative captions. These homework assignments are intended for you to apply the knowledge you learn in the course directly to data (either synthetic or real). Sometimes, I will allow you to substitute your own research data (if applicable) in lieu of the provided data to complete a problem in the assignment. This substitution is done so that you have a chance to actually see how to apply these techniques to your own research work. You may work with others on the assignments, but you must turn in your own work.

Final Project. The final project will be a paper and oral presentation in which you must use one or more statistical techniques learned in the course to answer a real research question. The project is to be chosen based on a set of questions that you would like to answer rather than the type of data analysis technique you would like to apply. You will be required to submit an abstract of your work for prior approval. More details will be provided in class.
Computing
A main goal of the course is to have you work with data using computer software packages and develop your own “statistical toolbox” for later use. All students who do not have a School of Meteorology (SoM) computer account may obtain one from Shawn Riley (NWC 5640). Python and MATLAB are readily available for use on the MetLab workstations. Python is open-source and can be installed on your own machine. **NOTE:** You are free to use whatever software package with which you feel comfortable. I will primarily use Python in this course for in-class examples, solutions, etc. If there are questions or issues with access to software, please see me during the first week of class.

Course Style
The overall structure of the class will consist of lectures, both traditional and interactive, covering the major topics. I will also present examples in class of using the actual techniques to analyze meteorological and climate data. Many examples will be in Jupyter Notebooks (i.e., Python-based interactive examples). Questions and interactions during class are welcome and **highly encouraged.** If you don’t ask questions when things are unclear, then neither of us benefit from classroom lecture.

- Arrive to class on time and prepared to learn.
- Submit assignments timely. **No late submissions are allowed without prior approval.**
- Take an **active role** in the learning process and **ask questions** when needed.
- Seek assistance from me if you do not understand the material or need help with an assignment.
- Be courteous to other students. Place all phones on vibrate/silence, do not text/use social media during class, and keep talking to a minimum.
Reasonable Accommodation Policy
The University of Oklahoma is committed to providing reasonable accommodation for all students with disabilities. Students with disabilities who require accommodation in this course are requested to speak with me as soon as possible. Students with disabilities must be registered with the Disability Resource Center prior to receiving accommodations in this course. The Disability Resource Center is located in University Community Center (730 College Ave). Phone: 405.325.3852. E-mail: drc@ou.edu

Academic Misconduct
Cheating is strictly prohibited at the University of Oklahoma. Simply put, it devalues your degree and ends up marring your character and reputation. For specific definitions on what constitutes cheating, review the Student’s Guide to Academic Integrity at http://integrity.ou.edu/students.html. If you are caught cheating, I am obligated to report it. Sanctions for academic misconduct include expulsion from the University and an F in this course. **BOTTOM LINE:** Don’t cheat - it’s not worth it.

To be successful in this class, all work must be **yours and yours alone.** You may work together on homework assignments, but you must submit your own original work for grading.

Religious Holidays
OU policy is to excuse absences of students that result from religious observances and to provide without penalty for the rescheduling of examinations and additional required classwork that may fall on religious holidays. Any student who has a religious holiday fall on a day an assignment is due, please see me no later than **one week before the deadline** so as to make other arrangements.

Title IX Resources and Reporting Requirement
For any concerns regarding gender-based discrimination, sexual harassment, sexual assault, dating/domestic violence, or stalking, the University offers a variety of resources. To learn more or to report an incident, please contact the Sexual Misconduct Office at 405.325.2215 or smo@ou.edu. Incidents can also be reported confidentially to OU Advocates (405.615.0013) 24 hours a day, 7 days a week. Please be advised that a professor/GA/TA is required to report instances of sexual harassment, sexual assault, or discrimination to the Sexual Misconduct Office. Inquiries regarding non-discrimination policies may be directed to: Bobby J. Mason, University Equal Opportunity Officer and Title IX Coordinator at 405.325.3546 or bjm@ou.edu. For more information, please visit http://www.ou.edu/eoo.html.

Adjustments for Pregnancy/Childbirth Related Issues
Should you need modifications or adjustments to your course requirements because of documented pregnancy-related or childbirth-related issues, please contact me or the Disability Resource Center at 405.325.3852 as soon as possible. Also, please see http://www.ou.edu/eoo/faqs/pregnancy-faqs.html for answers to commonly asked questions.
Course Outline

I. Fundamental Statistics + Least Squares Methods
- **(a)** Review of fundamental statistical measures / Statistical tests
- **(b)** Composite / Epoch analysis
- **(c)** Significance Testing
- **(d)** Correlation theory / Regression and correlation analysis / Multi-variate regression
- **(e)** Applications of regression / correlation theory (e.g., covariance modeling)

II. Matrix Methods
- **(a)** Linear algebra review
- **(b)** Empirical orthogonal functions (EOFs) / principal component analysis (PCA)
- **(c)** Extended and multivariate EOFs
- **(d)** Maximum covariance analysis (MCA) & canonical correlation analysis (CCA)

III. Time Series Analysis
- **(a)** Autocorrelation
- **(b)** Harmonic analysis, power spectral analysis, and significance testing for spectral peaks
- **(c)** Cross-spectral analysis
- **(d)** Filtering and filter designs - Best practices to use

IV. Additional Topics (as time allows)
- **(a)** Objective Mapping / Kriging
- **(b)** Wavelet analysis

Final Project Presentations will be done during the final week of classes and during the Final Exam Period.

FINAL EXAM PERIOD: FRIDAY, MAY 11, 2018 1:30 - 3:30 PM

NO CLASS: Thursday, Feb 15 (AGU Ocean Sciences Meeting)