Using Machine Learning to improve 1-h Low-level Rotation Forecasts
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BACKGROUND

NOAA Warn-on-Forecast (WoF): a promising effort to improve warning lead times by
providing rapid-update probabilistic guidance to human forecasters (Stensrud et al. 2009, 2013).

Low-level rotation on 3-km grid may potentially discriminate well between
tornadic and non-tornadic ( Wheatley et al. WAF 2015; Sobash et al. WAF 2016; Skinner et al. WAF 2016)

Current storm-scale forecasting techniques rely on uncalibrated probability of
exceedance ( PoE; # of ensemble members > threshold / ensemble size )

However, CAMs often contain large errors in storm intensity, timing, and location

Machine learning can leverage ensemble uncertainty, incorporate several model

variables, and mitigate forecast bias to produce calibrated probabilistic forecasts
(McGovern et al. BAMS 2017)
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DEFINING SIGNIFICANT LOW-LEVEL ROTATION

©

Maximize 2*Azimuthal Spatial Maximum in 3 Convolve with Gaussian Significant low-level
Shear in 1-h window grid point radius Kernel (2 grid point radius) rotation > 0.01 s
Smoothing Process

DATA EXTRACTION

DATA SOURCES

NSSL Experimental WoF System for ensembles (NEWS-e) model output
* 18-member ensemble forecast with 3-km grid spacing
* Initialized every 30 minutes starting at 1900 UTC until 0300 UTC
* Generated during the 2016 & 2017 NOAA Hazardous Weather Testbed
Spring Forecasting Experiments ( total of 30 dates )
NSSL Multi-Radar Multi-Sensor low-level (0-2 km AGL) azimuthal shear
* Azimuthal shear ~ %2 vorticity

* Quality-checked and remapped to the NEWS-e grid

Smart Sampling

- SmartSampling” | *| - Climatological " * Balanced training datasets improve model

_.1:5a mplmg P performance
R e T A * For each date and initialization time, extract all data

from regions within the significant low-level rotation
SN R AR T L * Randomly extract from outside in equal portion
AT Climatological Sampling
Rt O * Needed for calibrating the probabilities

* Randomly sample 3% of domain with 3.5% of points
coming from within the low-level rotation regions

PREDICTORS

6 ensemble statistics are calculated for 21 variables (see below )

* 0 (min), 25, 50, 75, 100 (max) percentiles and standard deviation
* Both for raw and gradient magnitude fields
* Maximized in 1-h window

Thermodynamics Kinematics Storm
*ML LCL 2mT, 0-1 km SRH 0-2 km Vorticity Max Updraft
*ML CAPE *ML 6, 0-3 km SRH 0-2 km UH Rainfall
*ML CIN 2 m Temp 0-1 km U shear 2-5 km UH *ML STP
SFC Pressure 2mQ, 0-6 km U shear Composite dBZ
2m@ *ML Q, 0-1 km V shear Max Hail

*ML: 0-75 mb Mixed layer
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Fig. 1 Random forest probability of double the observed azimuthal shear > 0.01 s (a,c). Uncalibrated probability of 0-2 km

AGL UH > 14 m?s? within a 3 grid point radius. The 14 m?s threshold has been associated with the 0.01 s double
azimuthal shear threshold following the methodology of Skinner et al. WAF 2016.

Early conclusion: Machine learning may fail to improve upon uncalibrated PoE in
some cases (cf. Fig. 1a,b), but may also reduce missed events (cf. Fig. 1c, d )

NEXT STEPS...

Employing an object-matching forecast verification approach

Employing additional algorithms such as logistic regression and gradient-boosted trees
Removing storm predictors to evaluate the discrimination ability of environment variables




