METR 4433: Mesoscale Meteorology

START:
January 15, 2018
DURATION:
T R 11:30-12:30
ID:
METR 4433

INSTRUCTORS:

Koch, Steve
Adjunct ​Professor

Address

120 David L Boren Blvd., Room 5600, Norman, OK 73072   View map

Categories

Spring 2018

METR 4433, Mesoscale Meteorology
Spring 2018

Instructor            Dr. Steven E. Koch (steven.e.koch-1@ou.edu or Steven.Koch@noaa.gov)

                                Office: 2405 National Weather Center (325-6904)

Office Hours: 4:00 pm Wednesdays

Room/Time         Room 5600, National Weather Center

                                Tues and Thurs, 11:30 am – 12:45 pm

Final Exam           Room 5600, National Weather Center

                                May 11, 2018, 11:30 am – 12:30 pm

TA/grader            Noah Brauer (nbrauer@ou.edu)

Office: National Weather Center, 5110 NWC

Office Hours: To be announced

Required Text     Markowski, P. and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes.  Wiley-Blackwell, 407 pp.

Supplemental     Carlson, T., 1998: Mid-Latitude Weather Systems, 2nd Edition, Routledge, 535pp.

Trapp, R.J., 2013: Mesoscale-Convective Processes in the Atmosphere.  Cambridge University

Press, 346 pp.

Prerequisites      Grade of C or better in METR 4133, METR 4424.

Students should have a good understanding of the structure, dynamics, physics and thermodynamics of the atmosphere prior to starting this course.  They should be familiar with the concepts of potential vorticity, wave phase and group velocities, quasi-geostrophic theory, isentropic analysis, and synoptic dynamics of jet streaks and fronts.

 

                                IF YOU HAVE NOT RECEIVED A GRADE OF “C” OR BETTER IN THESE PREREQUISITES YOU          CANNOT ENROLL.

 

Content                This course is designed to acquaint the student with the application of atmospheric

                                dynamics and physical analysis techniques to mesoscale phenomena. Topics include banded

precipitation systems, split fronts, mesoscale instabilities, boundary layer convective

phenomena, drylines, the low-level jet, gravity waves, thunderstorms, supercell convection,

tornadoes, mesoscale convective systems, mountain-valley circulations, mountain waves.

 

Grading                Homework Problems: 25%

Exam #1 (Tuesday, February 13): 25%

Exam #2 (Thursday, March 15): 25%

Exam #3 (Friday, May 11): 25%

In-class extra points: 2 pts for successful completion of each exercise (small groups) will be added to your score on the appropriate exam

 

Lecture Schedule:

 

16 January            Course description.  Scale analysis. MR 1-10.

18 January            Basic equations. MR 11-25.  Thermodynamic diagram analysis and helicity.  MR 32-40.

23 January            Surface frontogenesis. Types of fronts. Differential heating effect. MR 115-124, 149-158.

25 January            Semi-geostrophic dynamic frontogenesis.  The Sawyer-Eliassen equation. MR 124-129.

30 January            Split fronts and Cold Fronts Aloft (CFA).  Extra reading.

01 February          Drylines. Horizontal Convective Rolls (HCR).  MR 132-139. Trapp 142-147.  MR 88-93.

06 February          Lake-effect convection.  Mesoscale boundaries arising from DSH.  MR 93-105, 149-159.

08 February          Rainband classification. Conveyor belts. Seeder-feeder mechanism. Carlson readings.

13 February          Exam #1: Frontal bands and boundary layer convection

15 February          Inertial, Symmetric and Conditional Symmetric Instability.  MR 48-57.

20 February          Kelvin-Helmoltz Instability.  Horizontal shearing instability.  MR 58-68.

22 February          Internal gravity wave dynamics.  MR 161-170.

27 February          Wave ducting.  Density currents, bores and solitons.  MR 170-179, 142-149.

01 March               Inertia-gravity waves: dynamics, forcing, and climatology.  Extra reading.

06 March               Mountain-valley circulation systems.  MR 317-325.

08 March               Mountain waves and downslope winds.  MR 327-342.

13 March               Orographic blocking: cold-air damming, lee vortices, gap flows.  MR 343-363.

15 March               Exam #2: Mesoscale instabilities and wave dynamics

17 – 25 March:    Spring Break

27 March               Convection initiation.  Static and potential instability.  MR 42-47, 184-199.

29 March               Single-cell convective storms. Roles of vertical wind shear and CAPE.  MR 202-209.

03 April                   Multicell vs. supercell storms.  MR 209-223.

05 April                   Origins of midlevel rotation.  Streamwise vorticity.  Storm-relative helicity.  MR 223-233.

10 April                   Supercell propagation.  Storm splitting.  Dynamic pressure forcing.  MR 233-242, 27-32.

12 April                   Mesoscale convective systems: structure and airflow.  MR 245-253.

17 April                   RKW theory for squall line maintenance. Low-level jet. Bow echoes.  MR 253-265, 105-112.

19 April                   Mesoscale convective complexes.  Mesoscale convective vortices.  MR 265-270.

24 April                   Supercell tornadoes vs. non-mesocyclonic tornadoes.  MR 273-283.

26 April                   Tornado structure and dynamics.  MR 287-292.

01 May                   Microbursts. Derechos.  Hailstorms.  MR 292-308.

03 May                   Flash floods: environment and prediction.  MR 309-312. Extra readings.

11 May                   Exam #3: Deep convective systems and associated phenomena